Performance Aspects of Sparse Matrix-Vector Multiplication
نویسندگان
چکیده
منابع مشابه
Performance aspects of sparse matrix-vector multiplication
Sparse matrix-vector multiplication (shortly SpM×V) is an important building block in algorithms solving sparse systems of linear equations, e.g., FEM. Due to matrix sparsity, the memory access patterns are irregular and utilization of the cache can suffer from low spatial or temporal locality. Approaches to improve the performance of SpM×V are based on matrix reordering and register blocking [...
متن کاملImproving Memory-System Performance of Sparse Matrix-Vector Multiplication
Sparse matrix-vector multiplication is an important kernel that often runs inefficiently on superscalar RISC processors. This paper describes techniques that increase instruction-level parallelism and improve performance. The techniques include reordering to reduce cache misses originally due to Das et al., blocking to reduce load instructions, and prefetching to prevent multiple load-store uni...
متن کاملOn improving the performance of sparse matrix-vector multiplication
We analyze single-node performance of sparse matrix-vector multiplication by investigating issues of data locality and ne-grained parallelism. We examine the data-locality characteristics of the compressed-sparse-row representation and consider improvements in locality through matrix permutation. Motivated by potential improvements in ne-grained parallelism, we evaluate modiied sparse-matrix re...
متن کاملGPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
Many high performance computing applications require computing both sparse matrix-vector product (SMVP) and sparse matrix-transpose vector product (SMTVP) for better overall performance. Under such a circumstance, it is critical to maintain a similarly high throughput for these two computing patterns with the underlying sparse matrix encoded in a single storage format. The compressed sparse blo...
متن کاملHigh performance sparse matrix-vector multiplication on FPGA
This paper presents the design and implementation of a high performance sparse matrix-vector multiplication (SpMV) on fieldprogrammable gate array (FPGA). By proposing a new storage format to compress the indexes of non-zero elements by exploiting the substructure of the sparse matrix, our SpMV implementation on a reconfigurable computing platform with a multi-channel memory subsystem is capabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Polytechnica
سال: 2006
ISSN: 1805-2363,1210-2709
DOI: 10.14311/826